Title: | Construct PGx PRS |
---|---|
Description: | Construct pharmacogenomics (PGx) polygenic risk score (PRS) with PRS-PGx-Unadj (unadjusted), PRS-PGx-CT (clumping and thresholding), PRS-PGx-L, -GL, -SGL (penalized regression), PRS-PGx-Bayes (Bayesian regression). Package is based on ''Pharmacogenomics Polyenic Risk Score for Drug Response Prediction Using PRS-PGx Methods'' by Zhai, S., Zhang, H., Mehrotra, D.V., and Shen, J., 2021 (submitted). |
Authors: | Song Zhai [aut, cre] |
Maintainer: | Song Zhai <[email protected]> |
License: | GPL (>= 2) |
Version: | 0.3.0 |
Built: | 2025-01-26 04:12:16 UTC |
Source: | https://github.com/cran/PRSPGx |
Shrink prognostic effect sizes by p-value cutoff (PRS-Dis-CT turns out to be PRS-Dis-Unadj when setting p-value cutoff = 1)
PRS_Dis_CT( DIS_GWAS, G_reference, pcutoff = 1e-05, clumping = TRUE, p1 = 1e-04, d1 = 250000, r1 = 0.8 )
PRS_Dis_CT( DIS_GWAS, G_reference, pcutoff = 1e-05, clumping = TRUE, p1 = 1e-04, d1 = 250000, r1 = 0.8 )
DIS_GWAS |
a numeric matrix containing disease GWAS summary statistics, including SNP ID, position, |
G_reference |
a numeric matrix containing the individual-level genotype information from the reference panel (e.g., 1KG) |
pcutoff |
a numeric value indicating the p-value cutoff |
clumping |
a logical flag indicating should clumping be performed |
p1 |
a numeric value indicating p-value threshold to decide flag SNPs in clumping |
d1 |
a numeric value indicating window size in clumping |
r1 |
a numeric value indicating correlation in clumping |
PRS-Dis-CT automatically sets predictive effect sizes equivalent to the prognostic effect sizes; and only need disease GWAS summary statistics
A numeric list, the first sublist contains estimated prognostic effect sizes, the second sublist contains estimated predictive effect sizes
Song Zhai
Euesden, J., Lewis, C.M. & O'Reilly, P.F. PRSice: Polygenic Risk Score software. Bioinformatics 564, 1466-1468 (2015).
Zhai, S., Zhang, H., Mehrotra, D.V. & Shen, J. Paradigm Shift from Disease PRS to PGx PRS for Drug Response Prediction using PRS-PGx Methods (submitted).
data(PRSPGx.example); attach(PRSPGx.example) coef_est <- PRS_Dis_CT(DIS_GWAS, G_reference, pcutoff = 0.01, clumping = TRUE) summary(coef_est$coef.G) summary(coef_est$coef.TG)
data(PRSPGx.example); attach(PRSPGx.example) coef_est <- PRS_Dis_CT(DIS_GWAS, G_reference, pcutoff = 0.01, clumping = TRUE) summary(coef_est$coef.G) summary(coef_est$coef.TG)
Using snp_ldpred2_grid function from bigsnpr function
PRS_Dis_LDpred2(DIS_GWAS, G_reference, pcausal, h2)
PRS_Dis_LDpred2(DIS_GWAS, G_reference, pcausal, h2)
DIS_GWAS |
a numeric matrix containing disease GWAS summary statistics, including SNP ID, position, |
G_reference |
a numeric matrix containing the individual-level genotype information from the reference panel (e.g., 1KG) |
pcausal |
a numeric value indicating the hyper-parameter as the proportion of causal variants |
h2 |
a numeric value indicating the estimated heritability |
PRS-Dis-LDpred2 automatically sets predictive effect sizes equivalent to the prognostic effect sizes; and only need disease GWAS summary statistics and external reference genotype
A numeric list, the first sublist contains estimated prognostic effect sizes, the second sublist contains estimated predictive effect sizes
Song Zhai
Prive, F., Arbel, J. & Vilhjalmsson, B.J. LDpred2: better, faster, stronger. Bioinformatics 36, 5424-5431 (2020).
Zhai, S., Zhang, H., Mehrotra, D.V. & Shen, J. Paradigm Shift from Disease PRS to PGx PRS for Drug Response Prediction using PRS-PGx Methods (submitted).
data(PRSPGx.example); attach(PRSPGx.example) coef_est <- PRS_Dis_LDpred2(DIS_GWAS, G_reference, pcausal = 0.1, h2 = 0.4) summary(coef_est$coef.G) summary(coef_est$coef.TG)
data(PRSPGx.example); attach(PRSPGx.example) coef_est <- PRS_Dis_LDpred2(DIS_GWAS, G_reference, pcausal = 0.1, h2 = 0.4) summary(coef_est$coef.G) summary(coef_est$coef.TG)
Flexibly shrink prognostic and predictive effect sizes simutaneously with glocal-local shrinkage parameters
PRS_PGx_Bayes( PGx_GWAS, G_reference, n.itr = 1000, n.burnin = 500, n.gap = 10, paras, standardize = TRUE )
PRS_PGx_Bayes( PGx_GWAS, G_reference, n.itr = 1000, n.burnin = 500, n.gap = 10, paras, standardize = TRUE )
PGx_GWAS |
a numeric list containing PGx GWAS summary statistics (with SNP ID, position, |
G_reference |
a numeric matrix containing the individual-level genotype information from the reference panel (e.g., 1KG) |
n.itr |
a numeric value indicating the total number of MCMC iteration |
n.burnin |
a numeric value indicating the number of burn in |
n.gap |
a numeric value indicating the MCMC gap |
paras |
a numeric vector containg hyper-parameters ( |
standardize |
a logical flag indicating should phenotype and genotype be standardized |
PRS-PGx-Bayes only needs PGx summary statistics and external reference genotype
A numeric list, the first sublist contains estimated prognostic effect sizes, the second sublist contains estimated predictive effect sizes
Song Zhai
Ge, T., Chen, CY., Ni, Y. et al. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).
Zhai, S., Zhang, H., Mehrotra, D.V. & Shen, J. Paradigm Shift from Disease PRS to PGx PRS for Drug Response Prediction using PRS-PGx Methods (submitted).
data(PRSPGx.example); attach(PRSPGx.example) paras = c(3, 5) coef_est <- PRS_PGx_Bayes(PGx_GWAS, G_reference, paras = paras, n.itr = 10, n.burnin = 5, n.gap = 1) summary(coef_est$coef.G) summary(coef_est$coef.TG)
data(PRSPGx.example); attach(PRSPGx.example) paras = c(3, 5) coef_est <- PRS_PGx_Bayes(PGx_GWAS, G_reference, paras = paras, n.itr = 10, n.burnin = 5, n.gap = 1) summary(coef_est$coef.G) summary(coef_est$coef.TG)
Shrink prognostic and predictive effect sizes simutaneously by 2-df (main and interaction) p-value cutoff (PRS-PGx-CT turns out to be PRS-PGx-Unadj when setting p-value cutoff = 1)
PRS_PGx_CT( PGx_GWAS, G_reference, pcutoff = 1e-04, clumping = TRUE, p1 = 1e-04, d1 = 250000, r1 = 0.8 )
PRS_PGx_CT( PGx_GWAS, G_reference, pcutoff = 1e-04, clumping = TRUE, p1 = 1e-04, d1 = 250000, r1 = 0.8 )
PGx_GWAS |
a numeric matrix containing PGx GWAS summary statistics, including SNP ID, MAF, position, |
G_reference |
a numeric matrix containing the individual-level genotype information from the reference panel (e.g., 1KG) |
pcutoff |
a numeric value indicating the p-value cutoff |
clumping |
a logical flag indicating should clumping be performed |
p1 |
a numeric value indicating p-value threshold to decide flag SNPs in clumping |
d1 |
a numeric value indicating window size in clumping |
r1 |
a numeric value indicating correlation in clumping |
PRS-PGx-CT only needs PGx summary statistics
A numeric list, the first sublist contains estimated prognostic effect sizes, the second sublist contains estimated predictive effect sizes, the third sublist contains 2-df p-values
Song Zhai
Zhai, S., Zhang, H., Mehrotra, D.V. & Shen, J. Paradigm Shift from Disease PRS to PGx PRS for Drug Response Prediction using PRS-PGx Methods (submitted).
data(PRSPGx.example); attach(PRSPGx.example) coef_est <- PRS_PGx_CT(PGx_GWAS, G_reference, pcutoff = 0.01, clumping = TRUE) summary(coef_est$coef.G) summary(coef_est$coef.TG)
data(PRSPGx.example); attach(PRSPGx.example) coef_est <- PRS_PGx_CT(PGx_GWAS, G_reference, pcutoff = 0.01, clumping = TRUE) summary(coef_est$coef.G) summary(coef_est$coef.TG)
Shrink prognostic and predictive effect sizes simultaneously via the penalized term. With different assumptions on the relationship between the two effects, can be PRS-PGx-L (Lasso), PRS-PGx-GL (Group Lasso), and PRS-PGx-SGL (Sparse Group Lasso)
PRS_PGx_Lasso(Y, Tr, G, intercept = TRUE, lambda, method, alpha = 0.5)
PRS_PGx_Lasso(Y, Tr, G, intercept = TRUE, lambda, method, alpha = 0.5)
Y |
a numeric vector containing the quantitative trait |
Tr |
a numeric vector containing the treatment assignment |
G |
a numeric matrix containing genotype information |
intercept |
a logical flag indicating should intercept be fitted (default=TRUE) or set to be FALSE |
lambda |
a numeric value indicating the penalty |
method |
a logical flag for different penalized regression methods: 1 = PRS-PGx-L, 2 = PRS-PGx-GL, 3 = PRS-PGx-SGL |
alpha |
a numeric value indicating the mixing parameter (only used when method = 3). alpha = 1 is the lasso penalty. alpha = 0 is the group lasso penalty |
PRS-PGx-Lasso requires individudal-level data
A numeric list, the first sublist contains estimated prognostic effect sizes, the second sublist contains estimated predictive effect sizes
Song Zhai
Yang, Y. & Zou, H. A fast unified algorithm for solving group-lasso penalize learning problems. Statistics and Computing 25, 1129-1141 (2015).
Simon, N., Friedman, J., Hastie, T. & Tibshirani, R. Fit a GLM (or cox model) with a combination of lasso and group lasso regularization. R package version, 1 (2015).
Zhai, S., Zhang, H., Mehrotra, D.V. & Shen, J. Paradigm Shift from Disease PRS to PGx PRS for Drug Response Prediction using PRS-PGx Methods (submitted).
data(PRSPGx.example); attach(PRSPGx.example) coef_est <- PRS_PGx_Lasso(Y, Tr, G, lambda = 1, method = 1) summary(coef_est$coef.G) summary(coef_est$coef.TG)
data(PRSPGx.example); attach(PRSPGx.example) coef_est <- PRS_PGx_Lasso(Y, Tr, G, lambda = 1, method = 1) summary(coef_est$coef.G) summary(coef_est$coef.TG)
Simulated example data required by PRS-DIS and PRS-PGx functions.
data(PRSPGx.example)
data(PRSPGx.example)
A list with 8 sublists:
PGx GWAS including SNP ID, MAF, position, ,
, 2-df p-value, and N; SD(Y), and mean(T)
disease GWAS including SNP ID, MAF, position, , SE(
), p-value, and N
simulated individual-level genotype from the reference panel matched with the simulated sample PGx genotype
simulated phenotype (continuous)
simulated treatment assignment, 1 = treatment, 0 = placebo
simulated sample PGx genotype with 100 SNPs and 4000 subjects
simulated prognostic effect sizes (i.e., the underlying true prognostic effect sizes)
simulated predictive effect sizes (i.e., the underlying true predictive effect sizes)